

1 Cell biology	higher (import)	Name: Class: Date:	
Time:	48 minutes		
Marks:	48 marks		
Comments:			

1

Some students set up this experiment to investigate osmosis. They filled two pieces of dialysis [visking] tubing with different liquids and left them both in a beaker of *5%* sucrose solution for an hour.

		(2) (Total 8 marks)
b)	Describe two examples where osmosis is used in living things.	
		(6)
		··
		· ·
(a)	Describe and explain the likely results after one hour.	

- (a) Name **each** labelled part and give its function.
 - A Name

 Function

 B Name

 Function

 C Name

 Function

(b) (i) This plant cell also contains chloroplasts, a cell wall and a vacuole. Label **each** of these parts on the diagram.

(6)

(ii)	Give the function of these parts of a plant cell.
	Chloroplast function
	Cell wall function

.....

Vacuole function

(Total 12 marks)

The photograph shows some cells in the root of an onion plant.

3

By UAF Center for Distance Education [CC BY 2.0], via Flickr

- (a) Cells **X** and **Y** have just been produced by cell division.
 - (i) Name the type of cell division that produced cells **X** and **Y**.

.. (1)

(ii) What happens to the genetic material before the cell divides?

.....

(1)

	(b)	A gardener wanted to produce a new variety of onion.
		Explain why sexual reproduction could produce a new variety of onion.
		(3) (Total 5 marks)
4		osis and mitosis are different types of division in human cells. Compare the two processes by rring to where each takes place and the kind of products that are made.
		(Total 6 marks)

5

Some students investigated the effect of pH on the growth of one species of bacterium.

They transferred samples of bacteria from a culture of this species to each of eight flasks. Each flask contained a solution of nutrients but at a different pH.

After 24 hours, the students measured the amount of bacterial growth.

(a) It was important that the flasks in which the bacteria grew were not contaminated with other microorganisms.

Describe **two** precautions the students should have taken to prevent this contamination.

1	 	 	
2	 	 	

(2)

(b) To see the effect of pH on the growth of the bacteria, other conditions should be kept constant.

Suggest **two** conditions which should have been kept constant for all eight flasks.

1	 	 	

(2)

(c) The graph shows the results of the investigation.

(i)	Use the graph to estimate the pH at which the bacteria would grow best.
	pH
(ii)	What could the students do to find a more accurate value for the best pH for growth of the bacteria?
	(1)
	(Total 6 marks)
Plant root	s obtain some of their mineral salts from the soil by active transport.
What is in	volved in active transport?
	(Total 4 marks)

The students wanted to find the best pH for the growth of this species of bacterium.

The photograph shows a red blood cell in part of a blood clot. The fibres labelled \mathbf{X} are produced in the early stages of the clotting process.

(a)	Suggest now the fibres labelled X help in blood clot formation.	
		(1)
(b)	The average diameter of a real red blood cell is 0.008 millimetres. On the photograph, the diameter of the red blood cell is 100 millimetres.	
	Use the formula to calculate the magnification of the photograph.	
	Diameter on photograph = Real diameter × Magnification	
	Magnification =	(2)
(c)	Some blood capillaries have an internal diameter of approximately 0.01 millimetres.	
	(i) Use information given in part (b) to explain why only one red blood cell at a time can pass through a capillary.	
		(1)

(ii)	Explain the advantages of red blood cells passing through a capillary one at a time.
	(3)
	(Total 7 marks)

Mark schemes

(a) award 3 marks per tube for each key idea

for tube 1:

expands or gets firmer or bigger or inflates

it gains water

because the concentration of water is less than its surroundings

make sure answer is about water movement and not sucrose
solution

3

for tube 2

gets floppy or flaccid or contracts

it loses water

because the concentration of water is greater than its surroundings

3

(b) any 2 from:

uptake of water by root (hair) **or** movement from cell to cell within plant

do **not** credit references to diffusion unless it is clear that the candidate is referring to the diffusion of water

guard cell function

maintain turgor

water absorption in the large intestine

reabsorption of water from the nephron **or** collecting duct or in kidney **or** osmoregulation in kidney

allow osmosis in other animals if some use is shown

2

[8]

```
1
where (chemical) reactions take place
           do not accept where cell functions take place
                                                                                     1
or
carries/holds the organelles/named organelles / named chemicals (including nutrients)
           do not accept keeps the shape of the cell
or
contains water
or
presses out on the membrane
           allow: keeps cell turgid
           allows transport through the cell
B membrane
           do not accept by themselves:
                protects cell
                gives shape
                                                                                     1
controls what enters/leaves the cell
                                                                                     1
or
contains the cell/holds the cell together
           do not accept keeps harmful substances out
or
allows movement into and out of the cell C nucleus
                                                                                     1
contains the genetic
material/DNA/genes/chromosomes
           do not accept:
                brain of the cell
                stores information/instructions
                tells cell what to do
or
controls (the activity) of the cell
                                                                                     1
```

	(b)	(i)	one mark for each correctly labelled part cell wall do not accept anything inboard of the inner edge vacuole accept anything inboard of transplant		
			chloroplast: site of photosynthesis/ for photosynthesis		
			accept word equation or balanced equation	1	
			cell wall: supports the cell/keeps the shape/keeps it rigid		
			do not accept protects the cells	2	
		(ii)	vacuole: acts as reservoir for water / chemicals/(cell)/sap	3	
			or keeps cell turgid/pushes content to edge		
			or maintains concentration gradient		
			or		
			allows cell elongation (not growth)	1	[12]
3	(a)	(i) (ii)	mitosis correct spelling only replicates / doubles / is copied / duplicates	1	
			accept cloned ignore multiplied / reproduced	1	
	(b)	fertil	lisation occurs / fusion (of gametes)		
			accept converse for asexual, eg none in asexual / just division in asexual	1	
		so le	eading to mixing of genetic information / genes / DNA / chromosomes genes / DNA / chromosomes / genetic information comes from 1 parent in asexual ignore characteristics		
			ignore characteristics	1	

one copy (of each allele / gene / chromosome) from each parent

or

gametes produced by meiosis

or

meiosis causes variation

meiosis must be spelt correctly

1

[5]

one mark for each of the following comparisons to a maximum of **6**

candidates must make a clear comparison

meiosis	mitosis
sexual	asexual
gametes	growth
ovary or testes or gonads	all other cells
half number of chromsomes	same number of chromosomes
haploid or	diploid or
23 chromosomes	46 chromosomes
-	•
23 chromosomes reassortment or variation possible	no reassortment or no variation
23 chromosomes reassortment or variation possible or not identical	no reassortment or no variation or identical

[6]

amount of bacteria added

(c)

(i)

(ii)

7.5

agitation or amount of oxygen

accept in range 7.4 – 7.6

use more pH values around / close to pH 7.5 / between 7 and 8

[6]

2

1

1

molecules / ions

do not credit mineral salts

move(d) through / across the cell

wall / membrane

against (a / the) concentration

gradient

by a series of chemical

reactions

(because) diffusion cannot occur

energy (required)

(supplied by) respiration

oxygen required for respiration (to occur)

[4]

7 (a) hold <u>cells</u> together **or** prevent flow of <u>cells</u> **or** trap <u>cells</u>

1

(b) 12500

if correct answer, ignore working / lack of working

$$\frac{100}{0.008}$$
 for 1 mark

ignore any units

2

(c) (i) size RBC approximately same size capillary **or**no room for more than one cell **or**only one can fit **or**RBC is too big
allow use of numbers
do **not** accept capillaries are narrow

1

(ii) more oxygen released (to tissues) or more oxygen taken up (from lungs)

1

and any two from:

- slows flow **or** more time available
- shorter distance (for exchange) or close to cells / capillary wall
- more surface area exposed

2

[7]